Как мало осталось на земле по настоящему чистых мест...

Строительство

компактных очистных сооружений

Цель презентации-

показать возможность строительства компактных очистных сооружений блочного и модульного типа, выполненных в едином техническом и эстетическом стиле.

Комплекс очистных до 240 м³/сутки

- Мощность 1 модуля до 40м^3 /сутки;
- Мощность комплекса до 240м³/сутки (до 6 модулей);
- 100% заводская готовность;
- Быстрый монтаж;
- Типовое оборудование;
- Поэтапный ввод;
- Удобство проектирования;
- Удобство монтажа.

Биореактор-

полипропиленовая ёмкость, разделенная на отсеки. Имеет 4 основные зоны:

- анаэробная;
- аноксидная;
- зона аэрации;
- вторичные отстойники.

Внутри располагаются аэрационные элементы, эрлифты, водосборные лотки и распределительные гребенки

Дополнительная комплектация:

- Станция учета привозных стоков;
- Подающая КНС;
- Распределительная камера;
- Илонакопитель;
- Фильтр доочистки;
- Установка УФ обеззараживания;
- Расходомер;
- КНС чистой воды;
- Узел дозирования флокулянта.

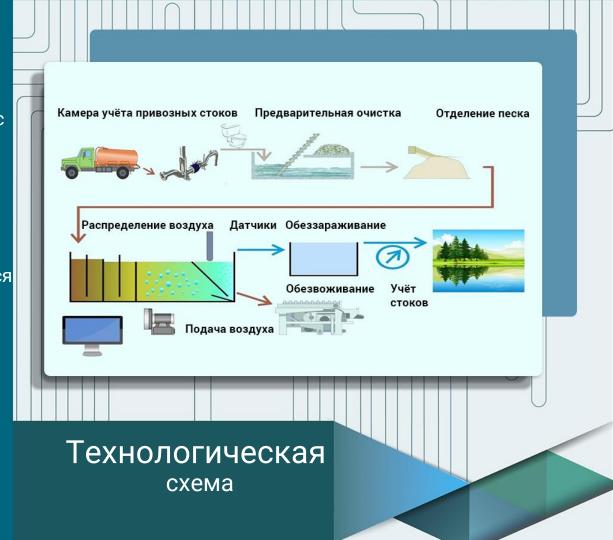
Комплекс для очистки 40 м³/сутки

- 1.Павильон для технологического оборудования (внутри находится воздуходувка и шкафы управления);
- 2. Подающая КНС;
- 3. Очистное сооружение на 40м³/сутки;
- 4. Илонакопитель;
- 5. Фильтр доочистки;
- 6. Установка УФ обеззараживания.

Комплект поставки оборудования определяется исходя из пожеланий заказчика и требуемых параметров очистки сточных вод.

Комплекс для очистки 120 м³/сутки

- 1. Павильон для технологического оборудования (внутри находятся воздуходувки и шкафы управления);
- 2. Подающая КНС;
- 3. Распределительная камера;
- 4. Очистное сооружение на 40м³/сутки (Зшт);
- 2. Илонакопитель (Зшт);
- 3. Фильтр доочистки;
- 4. Установка УФ обеззараживания.


Комплект поставки оборудования определяется исходя из пожеланий заказчика и требуемых параметров очистки сточных вод.

- Биореактор состоит из стандартных типовых блоков;
- Корпус биореактора изготавливается из железобетона;
- Здание из модульных быстровозводимых конструкций;
- Типовое технологическое оборудование.

В очистном сооружении стоки очищаются в установках механической и биологической очистки. Этап биологической очистки состоит из одной ёмкости с отдельными линиями очистки стоков, в которых установлены анаэробная, аноксная камеры, камера аэрации и вторичные отстойники. В каждой секции поддерживаются аэробные и аноксные условия и обеспечиваются процессы нитрификации и денитрификации. Активный ил от очищенных стоков отделяется в отстойниках дортмундского типа. Устанавливаются они рядом с камерой аэрации. Технология ЛОСБЕЛ предполагает одновременный процесс нитрификации и денитрификации, а также биологическое удаление фосфора.

Биологическая очистка выполнена по технологии ЛОСБЕЛ, а именно в виде вертикального гидравлического лабиринта. В данной технологии отсутствуют мешалки, перемешивание ила происходит гидравлическим методом при помощи воздуха от воздуходувок. В данной технологии легко выделять аэробные, анаэробные и аноксные зоны в одном биореакторе. Это позволяет соответствовать всем современным решениям в области очистки сточных вод, получать очистку до норм рыбохозяйственного назначения, достигать предельно низкого расхода по электроэнергии не более 0,3 кВт на 1м³ стока.

Характеристики:

Производительность:

от 1 до 100м3/час;

Потребляемая мощность:

до 7,5кВт;

Габариты павильона:

2400x1400x2400mm;

Масса: 600кг.

В состав оборудования входит:

- Приёмный патрубок;
- Пневматическая задвижка;
- Трубопровод;
- Электромагнитный расходомер;
- Измерительный модуль с датчиком pH;
- Отводящий патрубок;
- Павильон из сэндвич-панелей;
- Конвектор;
- Электронные ключ-карты;
- Устройство идентификации;
- Программное обеспечение;
- Принтер.

- Грабельная решетка для улавливания мусора;
- Песколовка;
- Шнек для выброса мусора;
- Шнек для выброса песка;
- Шкаф управления.

Технические характеристики:

- Производительность от 30 до 720 м³/час;
- Прозоры в решетках 2...6мм;
- Потребляемая мощность: 2,2...8,4кВт;
- Материал нержавеющая сталь.

- Железобетонный резервуар;
- Полипропиленовые и железобетонные перегородки;
- Эрлифты.

Описание:

Конструкция зоны денитрификации в виде вертикального лабиринта обеспечивает восходящее и нисходящее движение сточных вод, что обеспечивает тщательное перемешивание с активным илом без применения мешалок. Эрлифты обеспечивают циркуляцию активного ила в зоне денитрификации и позволяют поддерживать скорость движения жидкости даже при отсутствии поступающих стоков.

- Железобетонный резервуар;
- Аэраторы трубчатые;
- Распределительные гребенки;
- Эрлифты.

Описание:

На дне камеры аэрации устанавливаются трубчатые аэраторы из высокопрочной полиуретановой пленки с лазерной насечкой, через которые подается воздух. Аэраторы разделены на группы и могут выключаться при помощи кранов на распределительной гребенке. Также в камере аэрации установлены эрлифты для откачки избытка активного ила из вторичных отстойников.

- •Перегородки из железобетона;
- •Перегородки из полипропилена;
- Эрлифты;
- •Водосборный лоток;
- •ПВХ трубопроводы.

Описание:

Стены вторичных отстойников изготавливаются из железобетона и полипропилена. Нижняя часть разделена на 2 секции в форме перевернутых пирамид, где оседает активный ил, а затем откачивается при помощи эрлифтов. В верхней части располагается водосборный лоток из нержавеющей стали.

В состав здания входит:

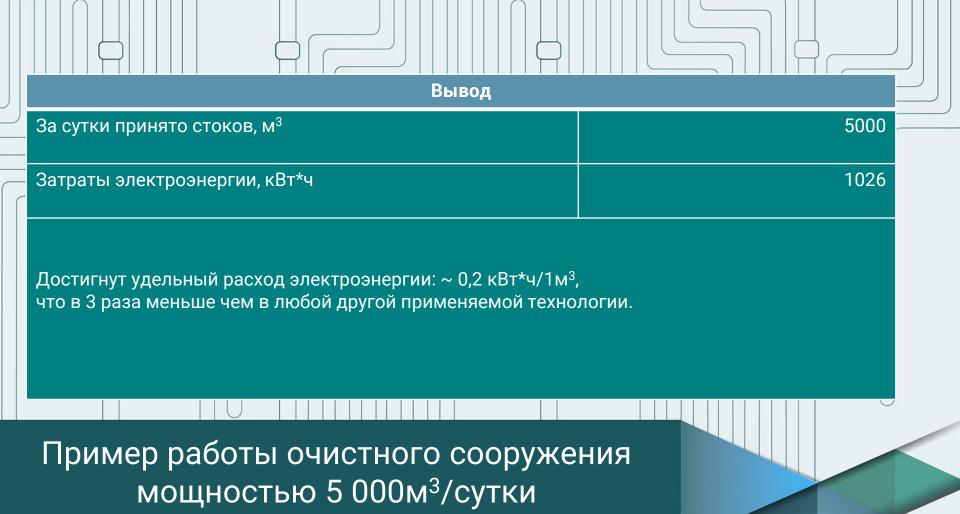
- Помещение с воздуходувками;
- Помещение с установками предварительной механической очистки;
- Помещение механического обезвоживания осадка;
- Хозяйственно-бытовые помещения.

Описание:

В здании административнобытового комплекса располагается
технологическое оборудование для
удаления песка и мусора,
находящегося в поступающих
сточных водах, а также
воздуходувное оборудование. Также
в здании АБК располагаются
помещения обезвоживания осадка,
помещения для обслуживающего
персонала, санузлы и другие
технические помещения.

В состав оборудования может входить:

- Микросетчатый фильтр барабанного типа;
- Установки ультрафиолетового обеззараживания самоочищающиеся ультразвуком;
- Мембранные системы очистки.
- •Барабанный микрофильтр позволяет достигнуть параметров рыбохозяйственного водоема, а установка ультрафиолетового обеззараживания обезвреживает от вирусов и бактерий. В качестве альтернативы может использоваться установка мембранной очистки, которая позволяет достигнуть более высоких параметров очистки и не требует дальнейшего обеззараживания.


Информация о режимах работы оборудования, показания с датчиков и анализаторов накапливается в базе данных и анализируется. На основе полученных данных определяются закономерности по максимальным и минимальным значениям поступающего стока, по загрязнениям и др. Исходя из полученных закономерностей система прогнозирует работу оборудования на ближайшее время. Например ночью или в выходной день задействовать оборудование на 30% от общей мощности, а к моменту пикового сброса увеличить подачу воздуха и рециркуляцию для сохранения показателей очистки воды.

Однако, если текущая ситуация отличается от прогнозируемой (например внезапный ночной пиковый сброс), то в работу оборудования незамедлительно вносятся корректировки на основе данных поступающих с анализаторов и измерительных приборов. Для полноценной работы системы достаточно данных о рН, ОВП и температуре.

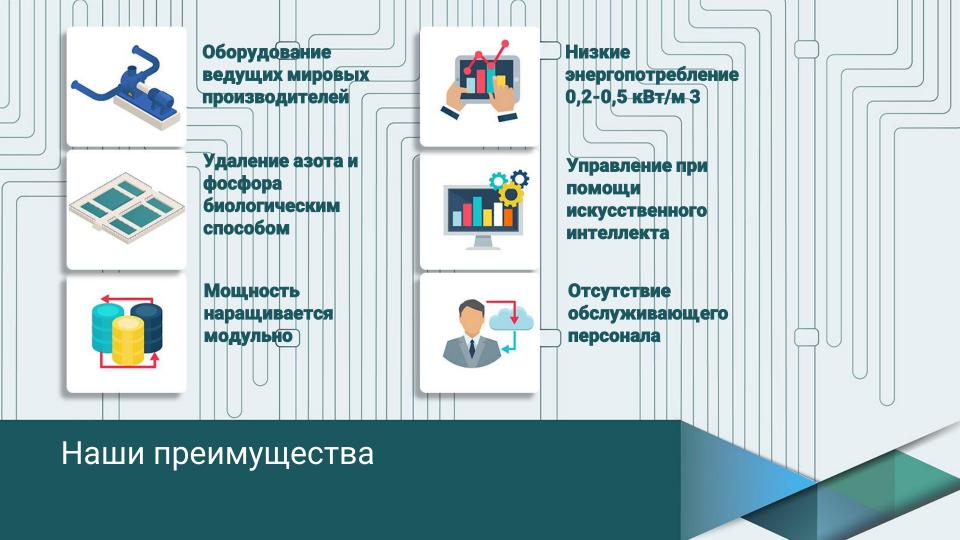
	Интервал времени	0:00-6:00	6:00-12:00	12:00-18:00	18:00-0:00
	Расход сточных вод, м³/час	83	340	250	158
ノ —	Пиковый расход, м³/час	130	500	300	230
	Суммарный расход, м ³	500	2050	1500	950
	Количество работающих воздуходувок, шт	2	4	4	2
	Рабочая частота, Hz	35	60	45	60
	Режим работы (работа-простой, мин)	5/15	10/10	10/10	10/10
	Суммарные затраты электроэнергии, кВт*ч	54	432	324	216

Пример работы очистного сооружения мощностью 5 000м³/сутки

Применение единой концепции

при проектировании и строительстве очистных сооружений, а также использование унифицированного типового оборудования и модульных конструкций позволяет:

- Создать типовые проекты для быстрого прохождения экспертизы;
- Строить очистные сооружения без обслуживающего персонала;
- Создать единую централизованную диспетчерскую для контроля всех объектов;
- Снизить затраты на эксплуатацию.


География
применения m-UCT технологии
в очистных сооружениях

При реализации проектов очистных сооружений по единой концепции получаем следующие преимущества:

- Возможность регулировки мощности очистного сооружения;
- •Быстрый срок реализации;
- Длительный срок эксплуатации;
- Надежность конструкции;
- •Высокие параметры очистки биологическим путем;
- Очистка по фосфору без применения реагентов до 90%;
- •Применение коррозионно-стойких материалов;
- Низкие эксплуатационные затраты.

Разработка инженерного решения и формирование цены:

Расчёт объемов резервуаров и площади участка, подбор технологического оборудования, формулировка проектного задания

составление смет и прохождение экспертизы

Строительно-монтажные работы:

Строительство бетонного резервуара; Монтаж технологического оборудования

Пуско-наладочные работы:

Настройка оборудования, настройка SCADA-системы, запуск активного ила

Основные этапы работ

по возведению очистных сооружений

中信建设

CITIC CONSTRUCTION

GREAT STONE

Наши партнёры

		Реализованные объекты – стадия проектирования, строительства, ПНР	Мощность, м ³
ı	1	г. Строитель, Белгородская область, Российская Федерация	10000
	2	г. Рогачев, Гомельская область, Республика Беларусь	9300
	3	г. Смолевичи, Минская область, Республика Беларусь	7100
	4	г. Березино, Минская область, Республика Беларусь	5000
	5	г. Дрогичин, Брестская область, Республика Беларусь	4000
I	6	г. Короча, Белгородская область, Российская Федерация	2500
	7	п. Ильинское-Усово, Московская область, Российская Федерация	2500
I	8	г. Свислочь, Гродненская область, Республика Беларусь	2000
	9	г. Вороново, Гродненская область, Республика Беларусь	1500
	10	с. Малиновка, Харьковская область, Украина	1500
	11	г. Новый Оскол, Белгородская область, Российская Федерация	1500
	12	с. Городня, Тверская область, Российская Федерация	1500

	Реализованные объекты – стадия проектирования, строительства, ПНР	Мощность, м ³
13	п. Шпитьки, Киевская область, Украина	1500
14	п. Октябрьский, Белгородская область, Российская Федерация	1500
15	г. Чериков, Могилевская область, Республика Беларусь	1200
16	п. Пролетарский, Белгородская область, Российская Федерация	1200
17	п. Раубичи, Минская область, Республика Беларусь	800
18	с. Таврово, Белгородская область, Российская Федерация	800
19	Птицефабрика «Хальч», Гомельская область, Республика Беларусь	660
20	п. Вейделевка, Белгородская область, Российская Федерация	600
21	г. Грайворон, Белгородская область, Российская Федерация	600
22	п. Политотдельский, Белгородская область, Российская Федерация	600
23	г. Козельск, Калужская область, Российская Федерация	500

	Реализованные объекты — стадия проектирования, строительства, ПНР	Мощность, м ³
24	п. Пятницкое, Белгородская область, Российская Федерация	400
25	д. Уборки, Минская область, Республика Беларусь	323
26	п. Ивня, Белгородская область, Российская Федерация	300
27	п. Хвастовичи, Калужская область, Российская Федерация	200
28	д. Карцово, Калужская область, Российская Федерация	200
29	с. Совхоз Ленина, Калужская область, Российская Федерация	200
30	д. Шипиловичи, Любанский р-он, Минская область, Республика Беларусь	160
31	с. Кутузовское, КП «Лугинино Парк», Московская область, Российская Федерация	120
32	с. Большетроицкое, Белгородская область, Российская Федерация	120
33	База отдыха, Минская область, Республика Беларусь	105
34	г. Ворняны, в/ч «Ворняны», Гродненская область, Республика Беларусь	105

Канализации не цивилизации!

Республика Беларусь, 223141, Минская область, Логойский район, г. Логойск, ул. Минская, д. 2г, офис 1-2. +375 (29, 25, 44) 753 11 11 +375 29 682 65 70 losbel.ru/ losbel.by

Российская Федерация, Белгородская область, г. Белгород Гражданский проспект, д.18, офис 8-10. +7 910 526 11 11 E-mail: e.brazouski@losbel.by E-mail: losbel@mail.ru